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Abstract

We explore a practical approach for designing ionization cooling channels with periodic solenoidal

focusing. We examine the lattice characteristics in terms of the properties of the coils and the cell

geometry. The peak magnetic field in the coils is an important engineering constraint in lattice

design. We examine the dependence of the peak field, momentum pass band locations, and the

beta function on the coil parameters. We make a systematic examination of all allowed lattice

configurations taking into account the symmetry properties of the current densities and the beta

function. We introduce a unique nomenclature for comparing cooling lattice configurations. While

solutions with a single coil per cell illustrate most of the effects that are important for cooling

channel design, the introduction of additional coils allows more flexibility in selecting the lattice

properties. We look at example solutions for the problem of the initial transverse cooling stage of

a neutrino factory or muon collider and compare our results with the properties of some published

cooling lattice designs. Scaling laws are used to compare solutions from different symmetry classes.
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I. INTRODUCTION

Ionization cooling [1, 2] is an essential feature of most designs for neutrino factories [3]

and muon colliders [4]. The phase space of the muon beam that comes from pion decays

greatly exceeds the acceptance of downstream accelerator systems. A front end system is

usually included that incorporates longitudinal phase space rotation to reduce the energy

spread of the beam and cooling to reduce its transverse emittance. For the initial cooling of

the muon beam the only cooling process that is fast enough compared to the muon lifetime

is ionization cooling. After the beam has been cooled there is a possibility of obtaining

additional cooling using the process of using optical stochastic cooling[5]. In the process

of ionization cooling muons are focused onto an absorber in the beam path. The particles

lose both transverse and longitudinal momentum while crossing the absorber. The beam is

then passed through an rf cavity that only restores the lost longitudinal momentum. The

net result is that a particle loses some of its transverse momentum and transverse cooling

takes place. The cooling effect is balanced against multiple scattering, which acts to increase

the emittance. The relative effect of multiple scattering is reduced if the beam is strongly

focused in the absorber. Thus we see that a transverse cooling channel has three essential

ingredients: an absorber, an rf cavity, and a system of some sort to focus the beam in the

absorber and confine it during its transport through the cavity.

Muon colliders have the additional requirement of reducing the longitudinal emittance

of the muon beam. Direct longitudinal ionization cooling using the slight relativistic rise of

ionization energy loss at high energies is very inefficient. Thus the only practical method of

longitudinal cooling is to use the process of emittance exchange. Dispersion is introduced into

the cooling lattice, and the absorber is shaped, in such a way that reductions in longitudinal

emittance are compensated by a corresponding increase in transverse emittance. Additional

transverse cooling can be provided in the lattice to provide overall 6-dimensional emittance

reduction. Longitudinal cooling thus introduces dispersion as one additional ingredient in

the focusing lattice design. This has been accomplished in several ways for solenoid lattices.

Bending a solenoid produces dispersion in the plane perpendicular to the plane of bending

[6]. If a dipole field is superimposed on the bent solenoid, the transverse displacement is

proportional to the deviation of the momentum from some reference value. Wedge-shaped

absorbers are used to reduce the momentum spread of the dispersed beam. A design of

2



this type used an 8.5 m long channel [4] with the solenoid first bent in the horizontal plane

to generate vertical dispersion and then bent in the vertical plane to generate horizontal

dispersion.

Dispersion can also be generated in a cooling ring. The Tetra ring, which was the first

design of this type [7], used dipoles for bending and solenoids for focusing. All of the focusing

and bending in the RFOFO cooling ring design [8] was provided by tipped solenoids. Small

cooling rings typically have a problem with injection of large emittance beams. This can be

avoided by transforming the ring to a helical geometry [9], which is sometimes referred to

as a “Guggenheim” configuration.

Many different types of cooling channels have been proposed. Magnetic focusing can be

provided by quadrupoles, solenoids, helices or lithium lenses. The most effective application

for quadrupoles seems to be as a precooler for large emittance beams [10]. Lithium lenses

are most naturally used for the low emittance final stages of cooling [11]. The possible

application of helices is a recent development that may have widespread applications [12].

Helices have an advantage when longitudinal cooling is required since the dispersion arises

naturally. Nonetheless, most of the mature transverse cooling channel design work done

so far has made use of periodic solenoid focusing. Unlike quadrupoles, solenoids have the

advantage that both transverse planes are focused simultaneously.

Two types of solenoid focused channels have been studied. The first is a continuous

large-aperture solenoid with rf cavities inside the coils. A uniform channel is a natural

choice when a gas is used as a continuous absorber [13]. As cooling proceeds the Larmor

trajectories of the particles shrink down towards the centers of their orbits. This is effectively

1-dimensional cooling since the transverse size of the beam is not affected by the cooling.

Cooling of the transverse dimension can take place if field reversal sections are added to

the lattice [14]. The uniform channel has the advantage that there are no restrictions

on the placement of absorbers and rf cavities and that there are no stop bands in the

transmitted momentum spectrum. It has the disadvantage that the large aperture magnets

are expensive. In addition we will see in the next section that solenoidal cooling channels have

a problem with canonical angular momentum unless part of the channel has the direction of

the magnetic field reversed. This is a second reason for the necessity of adding one or more

field reversal matching sections. These reversal sections tend to be complicated with the

potential for emittance growth or beam loss. No channel can be continuous in practice. A
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real channel must allow access for cryogenics, power leads, instrumentation or rf waveguides.

Gaps must be provided between the solenoid coils to allow for this. For a given value of

the beta function the uniform channel must provide a larger volume of magnetic field and

it cannot easily take advantage of tapering the channel parameters as the beam cools. The

alternative cooling channel for the U.S. Feasibility Study 1 [15] for a neutrino factory used

a single-flip continuous solenoid channel for cooling. Another early example for the muon

collider used six coils per cell in an alternating polarity lattice [4, 16, 17]. Long ”continuous”

solenoids surrounded the absorbers while the other coils in each cell were used for matching

the beta function and gently reversing the field direction.

The second type of solenoid focused channel is a periodic lattice of solenoid magnets.

One has the freedom here to place coils in optimal locations to achieve specific design goals.

The use of smaller radius solenoids result in less expensive designs than the continuous

solenoid channel. In addition, if the polarity of the solenoids alternate along the lattice,

the canonical angular momentum problem is solved naturally. The chief disadvantage of

the periodic arrays is the presence of momentum stop bands, which restrict the useable

operating range.

A number of cooling lattices using periodic solenoid focusing have been designed over the

past decade. Historically the first system considered had a simple sinusoidal dependence of

the longitudinal field with axial position. In analogy with the common FODO channel of

quadrupole lenses, this was designated a FOFO lattice [18] since each solenoid lens focuses

both transverse plane simultaneously. Later, following on a suggestion by Andrew Sessler,

it was found that the performance of these lattices could be improved significantly by the

addition of higher harmonic terms to the on-axis fields [19]. Lattices of this type were given

name “super-FOFO” or “SFOFO”. By changing the coil configurations and symmetry

properties a number of periodic lattice configurations were discovered. These were typically

given their own unique names. One problem with this development was that the relation of

these solutions to each other was not always clear. Another problem was that the chosen

names were often confusing and not uniquely defined.

Some of the basic properties of a periodic solenoid lattice can be qualitatively determined

with a thin lens analysis [20, 21]. A step beyond this was made by Penn [22, 23], who

examined periodic solenoidal lattices in terms of the addition of second and third harmonics

to the fundamental sinusoidal field. This analysis introduced a scaling variable χ = B0λ
p
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whereB0 is the peak on-axis field, λ is the period of the magnetic field and p is the momentum

of the particle. Stable lattice configurations could be located on phase diagrams with χ as

the abscissa and the relative amount of harmonic content as the ordinate. This type of

analysis was later extended and the stable regions of the space were more clearly identified

[24]. A limitation with this approach is that the magnetic field used in most of the cooling

lattices adopted in practice, such as the lattice for the US Study 2 neutrino factory, have

much more complex Fourier decompositions.

An alternative analysis of lattice stability and beta function symmetries has been done

using recursive solutions of Hills equation [25]. This method uses Fourier coefficients of the

focusing function as input. It produces power series expansions for the trace of the one-cell

transport matrix as a function of momentum and for the beta function as a function of

position. It was found to produce results in good agreement with the simpler method that

is used in this paper.

While an analysis of lattice properties in terms of its leading harmonic content gives

some important theoretical understanding of its characteristics, it is not the most practical

approach for designing a cooling channel. In this paper we look instead at lattice charac-

teristics in terms of the properties of the coils and the cell geometry. We use the number of

coils in a geometric cell and the symmetry properties of the current densities and the beta

function to introduce a unique nomenclature for comparing cooling lattice configurations.

We separate the results presented here by the number of coils per geometric cell. We first

examine solutions with a single coil per cell. This arrangement illustrates most of the ef-

fects that are important for cooling channel design. Then we examine the changes that are

introduced as additional coils are added to the cell.

We show the results predicted by thin lens analysis. We examine the predictions for

lattices with a perfectly sinusoidal magnetic field. This special case is important because

theoretical predictions for the lattice properties can be made in terms of solutions of the

Mathieu equation. This allows us to check the accuracy of our numerical techniques for

calculating lattice characteristics. The peak magnetic field in the coils is an important

engineering constraint in lattice design. We examine the dependence of the peak field on

coil parameters. We then examine the dependence of pass band locations and beta functions

on these same parameters. We develop software for optimizing lattice parameters taking the

peak field constraint into account. This allows us to make a systematic examination of all
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allowed lattice configurations. Finally we introduce a scaling relation to compare our results

for different symmetry classes and to compare these results with the properties of some

published cooling lattice designs.

II. IONIZATION COOLING LATTICES

Muon beams suffer from two major difficulties compared with normal accelerator beams.

The first is due to their method of production. Pions created in the interaction of a proton

beam with a target must be collected and allowed to decay into muons. The characteristics

of the resulting muon beam are determined by the properties of the collection channel.

Typically muon beams have a very large rms normalized transverse emittance εTN ∼ 20

mm rad and a large momentum spread. The momentum spread can be reduced to ∼12%

rms at the expense of increased bunch length if the beam is sent through a phase rotation

channel. This large emittance points out the need for transverse cooling before the beam is

introduced into an accelerator chain. The second problem is the muons short lifetime (2.2

µs at rest), which demands that any cooling has to be done very quickly. The only practical

method for initial cooling of muon beams is ionization cooling. Typical applications such as

neutrino factories [3] require the cooled muon beam to have εTN ∼ 7 mm rad, while muon

colliders [4] need εTN ∼ 0.05 mm rad.

A. Properties of cooling lattices

In ionization cooling the muon beam is focused in an absorber in the beam path. The

beam loses energy by dE/dx, which reduces both the transverse and longitudinal components

of the particles momentum. The absorber is followed by an rf cavity that only restores

the lost longitudinal momentum. The result is a net loss of transverse momentum and a

reduction in transverse emittance. The fractional change in emittance is proportional to the

fractional change in momentum arising from energy loss. Multiple Coulomb scattering in

the absorber material is a competing process that acts to increase the transverse emittance.

The balance between the strength of these two processes determines whether net cooling

takes place. If dispersion is introduced into the transport lattice and if the absorber is given

a wedge shape in the transverse direction, then it is also possible to reduce the momentum
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TABLE I: Values of C.

material C [mm mrad / cm]

liquid H2 38

liquid He 51

LiH 61

Li 69

Be 89

spread in the beam. Energy straggling in the material is the main heating term that limits

the amount of longitudinal cooling.

When the competing processes of energy loss and multiple scattering become equal the

beam reaches an equilibrium normalized transverse emittance given by

εeqTN ≈ βTE
2
S

2βmc2LR|dE
dz
|

=
βT

β
C (1)

where βT is the beta function from the focusing system, ES = 14.1 MeV, β is the relativistic

velocity factor, mc2 is the muon rest mass, and LR and dE/dz are the radiation length

and ionization energy loss rate of the absorber material. We have collected the material-

dependent properties into the quantity C. Values of C for some common materials used for

ionization cooling, evaluated at the momentum for the minimum of dE
dx

, are given in Table I.

One wants to use absorbers where the product of radiation length and the energy loss rate

is large. Hydrogen and lithium hydride are the best choices. The only other parameter that

is under our control is the beta function, which we want to keep as small as possible over

the length of the absorber.

Transverse ionization cooling can take place in principle at any momentum. However

at low momentum the rapid rise of dE
dx

as the momentum falls leads to a blow up in the

longitudinal emittance. Cooling at high momentum is uneconomical since a lot of rf power

is required to replace a fixed fraction of the initial energy. For these reasons cooling channels

are typically designed with a reference momentum near 200 MeV/c. The momentum is

sometimes reduced in the final stages of the channel in order to reduce the value of the beta

function and to take advantage of the higher value of dE
dx

.

At 200 MeV/c the energy loss rate in liquid hydrogen is ∼0.3 MeV/cm. If the beta
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function can be kept small over ∼30 cm, the total loss of energy is 9 MeV. For a 200 MHz

rf cavity with a gradient of 15 MV/m and operating 30o off the zero-crossing, we would need

∼1.2 m of cavities to replace the lost energy. Thus most of the space in a typical cell in a

cooling lattice is taken up with rf cavities.

A solenoidal focusing system in a cooling channel has a large number of sometimes con-

flicting requirements:

• The minimum value of the beta function should be small in order to get a small

equilibrium emittance.

• The beta function should remain small over an axial region longer than the absorber.

• The maximum value of the beta function should be small for reasonable transverse

beam apertures.

• The momentum acceptance of the lattice should overlap the reference momentum.

• The momentum acceptance should be larger than the momentum spread of the desired

beam (∼ ±30% full width).

• The transverse aperture must accept the transverse emittance of the beam.

• For efficient cooling the channel must have very large angular acceptance.

• Field reversals are necessary to prevent the build-up of canonical angular momentum.

• Energy straggling and transverse-longitudinal coupling should not cause loss of parti-

cles from the rf bucket.

There are also engineering constraints on any practical magnetic configuration:

• The operating current in a superconducting magnet must be smaller than the critical

current corresponding to the peak field in the coil.

• The arrangement of coils must allow access to the rf cavities and absorbers.

• There may be constraints on the strength and direction of the magnetic field in the

rf cavities to prevent breakdown from limiting the useful electric field gradient in the

cavity.
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General methods of achieving small beta functions include using a short cell length,

using a phase advance near a lattice resonance, operating in one of the lower momentum

pass bands, or using higher harmonics in the magnetic field.

Cooling channels differ from most other beam transport systems because they must trans-

mit large divergence, i.e. non-paraxial, particles. In order for the rate of beam heating to be

small the mean beam divergence should be much larger than the mean multiple scattering

angle. In a focusing channel the beam divergence angle is given by

σθ =

√
εTN

βγβT
(2)

We substitute Eq. 1 into Eq. 2. For efficient cooling the channel needs to transmit rms

angles at least twice as large as the equilibrium value. If the full acceptance required is 3

times the rms value, we find the required angular acceptance is [26]

Aθ ≈ 3

√
2 C

β2γ

For 200 MeV/c (β = 0.89, γ = 2.14) and liquid hydrogen (C = 4.2 10−3) we find the required

angular acceptance is ∼210 mrad.

Angular momentum is a complication of solenoid channels that is not encountered in

other focusing systems [27]. In an empty solenoid channel with no material in the beam

path the canonical angular momentum

Lc
z = Lz + e r Aφ

Lc
z ≈ Lz +

e

2
Bzr

2 (3)

is a conserved quantity, where Lz is the mechanical angular momentum, e is the muon charge,

r is the radius of the particle, Aφ is the azimuthal component of the vector potential, and Bz

is the solenoid field. Consider a particle far from the solenoid with no mechanical angular

momentum. Then Lc
z is 0 initially. As a particle with non-zero radius crosses the radial

fringe field at the entrance to the solenoid, it develops an azimuthal momentum that exactly

cancels the field-dependent term in Eq. 3 and the canonical angular momentum remains 0.

At the exit of the solenoid the radial fringe field is in the opposite direction, which takes

away the particle’s mechanical angular momentum. The situation changes however in a

cooling channel where the particles lose energy in the absorbers. If we consider a case where
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complete cooling has taken place and all of the particles transverse momentum is removed,

the particle will travel parallel to the z axis, and the mechanical angular momentum will

vanish. However, the field-dependent part of Lc
z is still present and when this particle exits

the solenoid the fringe field will introduce a divergence and an emittance increase for the

beam. This effect can be eliminated by placing absorbers at locations where Bz = 0 or by

alternating the direction of the magnetic field. This can be done most naturally by using

alternating polarity lattices where the field reverses in alternate cells. It can also be done

by using a “continuous” solenoid channel for some distance, introducing a special field flip

region, and then continuing the continuous channel with the solenoid direction reversed.

The rf cavities in cooling channels typically operate with a synchronous phase ∼30o from

the zero-crossing point of the rf wave. This provides a good deal of phase focusing, which

is needed to control the energy spread coming from straggling in the absorber material. In

addition the large transverse amplitude particles that are required for efficient cooling have

a much different time of flight in a solenoid channel than particles that travel near the axis.

Both of these effects can lead to particle losses due to particles falling out of the rf bucket. A

disadvantage of operating near zero-crossing is that a greater length of rf cavities is required

to replace the energy lost in the absorber.

Solenoid lattice design has traditionally been done by varying the parameters of a few

coils at the boundary between lattice cells, such that beta function is preserved over a range

of incident momentum values. In practice a computer program was used to minimize the

beta function slopes at the cell boundary at, for example, 9 momenta spaced at 10% inter-

vals around the central value. Although this method has been very successful in producing

useful lattice designs, there is always the danger that an even better design may have been

overlooked. In addition many solenoid lattice designs found this way have had unacceptably

large values of the peak field in the coils. For that reason we explore a more systematic

approach to solenoid lattice design in this paper. The new optimization technique places

primary emphasis on obtaining a momentum pass band for the lattice at a desired refer-

ence momentum. Secondary fitting criteria include minimizing the peak field in the coil,

maximizing the momentum acceptance, and minimizing the beta function at the reference

momentum. Results from this analysis are presented in sections V-VII.
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B. Classification of periodic solenoid lattices

One of our goals is to develop a systematic method for comparing the properties of various

periodic solenoid lattices. There are several important factors that influence the lattice

behavior. Every lattice has a basic geometric cell structure that is repeated many times.

Cooling cells contain at a minimum an absorber to decrease the energy of the particles,

an rf cavity to replace the lost energy, and magnets to provide focusing. We define the

geometric cell length to be d. We assume the focusing is done with one or more solenoids

in each cell. We allow the possibility that the current in these solenoids can have different

polarities. We also allow that the overall polarity of the magnetic field may alternate between

adjacent geometric cells. If λ is the period of the magnetic field, then we either have the

case λ = d when the magnetic field is the same in every geometric cell, or λ = 2d when

the polarity alternates. We will give prescriptions below for defining the boundary (b)

locations between geometric cells, depending on the number of coils per cell. We define the

midpoint (m) of a cell to be the axial position midway between the boundaries. We will see

that it is useful to maintain this distinction since the lattice solutions with beta minimums

at b and m can have very different behavior.

The beta function depends on the geometry of the lattice, the symmetry of the magnetic

field, and on the reference momentum of the particles of interest. For cooling lattices we are

mainly interested in the spatial location and size of the minimum of the beta function, since

these points determine where the absorbers should be located. We will see that periodic

solenoid lattices have a series of momentum pass bands. We will denote the high momentum

pass band as number 1 and then count the other pass bands in order as we decrease the

momentum. The spatial location of the minimum of the beta function changes for each

pass band. We are primarily interested in solutions with the minimum located either at

the cell boundary or at the midpoint of the cell. Solutions with multiple minima in the

cell interior are also possible, but these don’t appear to offer any particular advantages for

cooling purposes.

In order to compare the properties of various lattice designs we need a labeling system

that uniquely incorporates this lattice information. We denote cooling lattices with symbols

that show the relative polarity of the coils in adjacent geometric cells, the location of the

minimum of the beta function, and the number of the momentum pass band for the reference
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FIG. 1: (Color) The four basic lattice configurations for one coil per cell. (a) < +|+ >, (b)<

+̂+̂+̂ >, (c) < +|− >, (d) < −̂+̂−̂ >.

momentum. We choose symbols that have a beta minimum in the center so that the coil

arrangement on either side of the minimum is immediately apparent.

For solutions with the minimum of the beta function at the cell boundary we arbitrarily

choose the first coil to have positive polarity. The boundary between the two geometric

cells (defined below) is denoted with a vertical line and we append the number of the pass

band as a subscript at the end of the symbol. Thus, for example, a lattice with 1 coil per

geometric cell, alternating polarity in adjacent geometric cells, with the beta minimum at

the cell boundary, and operation in the high energy pass band would be denoted < +|− >1.

For solutions with the minimum of the beta function at the cell midplane the symbol

shows the polarity of the coils in a complete cell together with the polarity of the coils up

to the center of the two adjacent half-cells. We use a caret symbol to indicate the location

of the minimum of the beta function. For example for a lattice with 3 coils of the same

polarity per geometric cell, alternating polarity in adjacent geometric cells, with the beta

minimum at the cell midplane, and operation in the second pass band, the symbol would be

< −̂ − ++̂ + −−̂ >2. For lattices with an odd number of coils per cell the minimum of the

beta function would be located under one of the coils.

Figure 1 shows the four basic configurations for the case when there is one coil per cell.

In these figures and in the ones that follow the rf cavities are colored magenta, the absorbers

are gray, and the solenoid coils are cyan. The black solid curve is the magnetic field and the

red dotted curve is the beta function.
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III. SOLENOID PROPERTIES

We gather here several properties of solenoid magnets that we will require later in the

paper. The focal length f of a thin solenoid lens is given by [28]

f =
4 p2

e2B2
0L
. (4)

where p is the particle momentum, B0 is the solenoid field strength and L is the length of

the solenoid. The beta function of a uniform solenoid channel has the value

βo =
2p

eB
. (5)

inside the solenoid. We note that the beta function can be reduced by decreasing the

operating momentum or by increasing the solenoid field strength.

For the computer calculations we use a cylindrical block description of a solenoidal coil.

The coil has a total length L, inner radius a, outer radius b, and carries the current density

J . If z is the axial position of an observation point measured from the center of the solenoid,

then the on-axis field is given by

B(z) =
µ0J

2
{(L− z) ln[

b+
√
b2 + (L − z)2

a+
√
a2 + (L− z)2

] (6)

+(L+ z) ln[
b+

√
b2 + (L+ z)2

a+
√
a2 + (L+ z)2

]}.

This description of the solenoidal field will be used later in determining the beta functions

of the lattices.

In order to investigate the peak fields in the coils we need off-axis expressions for the

solenoid fields. In general both longitudinal and radial field components are present. The

field component for current sheets can be expressed in closed form in terms of elliptic integrals

[29]. Let us define the functions

bz(r, z) =
µ0I

′

π

za

ζ(a+ r)
[K(k) +

a− r

2a
(Π(k, c)−K(k))]

br(r, z) =
µ0I

′

π

ζ

4r
[2(K(k) − E(k)) − k2K(k))]
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where I ′ is the current per unit length and we use the auxiliary quantities

k =

√
4ar

(a+ r)2 + z2

ζ =
√

(a+ r)2 + z2

c = − 4ar

(a+ r)2

K(k), E(k) and Π(k, c) are complete elliptic integrals. The magnetic field from the solenoidal

sheet is given in terms of these functions by

Bz(r, z) = −bz(r, z − L) + bz(r, z + L)

Br(r, z) = br(r, z − L) − br(r, z + L)

We approximate the field of the current block by using the sum of the fields from 10 current

sheets with different radii.

IV. SINUSOIDALLY-VARYING SOLENOID LATTICES

For the remainder of this paper we will consider lattices with periodically varying

solenoidal fields. If we consider a particle whose energy is high enough, the period of the

particles betatron oscillations Λ is longer than the geometric cell length of the lattice d.

As the momentum of the particle is reduced we will eventually reach the point when Λ =

d. At this point the particle sees the same radial kick at the corresponding locations in

each oscillation and a resonance causes the amplitude of the motion to grow. Under these

conditions the particle has a phase advance of π, so we call this the π resonance. If the

momentum continues to be reduced we will reach the condition that the particle makes two

betatron oscillations while traversing each cell of the lattice and a second (2π) resonance

occurs. In general resonances occur whenever λ = nd, where n is an integer.

A. Mathieu analysis

Stable solutions for the motion of charged particles in lattices with sinusoidally varying

magnetic fields can be found from the eigenvalues of the Mathieu equation [30–33]. The

radial and azimuthal equations of motion of a charged particle are given in cylindrical
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coordinates as

r̈ − rφ̇2 =
erφ̇Bz

mγ
mγ

r

(
r2φ̈+ 2rṙφ̇

)
= −qṙBz

where the dots are time derivatives and we neglect any changes in γ. If we assume that the

azimuthal acceleration can be neglected, the azimuthal equation reduces to

φ̇ = − qBz

2mγ

Requiring this constraint decouples the radial and azimuthal motions. This is known as the

Larmor frame of reference. In a constant solenoid field in the laboratory frame the Larmor

frame rotates with a constant angular velocity. In the case here with a periodically reversing

field the Larmor frame oscillates back and forth. The radial equation becomes

r̈ +
r

4

(
eBz

mγ

)2

= 0

If we now assume that near the axis

Bz(z) = B0 sin(kz)

we find the radial equation

r̈ + r

(
eB0

2mγ

)2

sin2(kz) = 0

This equation can be transformed into the canonical form of the Mathieu equation

d2y

dν2
+ (a− 2q cos(2ν)) y = 0

The parameter

q =

(
eB0λ

8πp

)2

where λ is the period of the magnetic field and p is the momentum of the particle. For

the case considered here the parameter a = 2q. Stable, periodic solutions of the Mathieu

equation only exist for certain values of the parameter q.

The first five stop bands for particle momentum in a sinusoidally varying solenoid field

are given in Table II. We will use these results in the following section to check the accuracy

of our computer calculations of the lattice properties.
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TABLE II: Mathieu stop bands.

Stop band q(low) q(high)

1 0.3290 0.8898

2 1.8582 3.0391

3 4.6270 6.4259

4 8.6316 11.0480

5 13.8711 16.9047

B. Symplectic integrator method

We can examine the properties of finite size, i.e. non-thin lens, coils by evaluating the

one-cell transport matrix numerically using a second order symplectic integration algorithm

[34]. We break the cell up into a large number of parts, each part consisting of a half-step

of drift, a thin lens and another half-step of drift. The focusing strength K of the thin lens

is determined from the local value of the on-axis solenoid field from

K(z) =

(
eBz(z)

2 p

)2

The accuracy of this method is very good as we demonstrate below in comparisons of the

tracking results with the predictions of the Mathieu theory for lattices with sinusoidal mag-

netic fields.

Note that the focusing strength is proportional to B2. Unlike quadrupoles, solenoids focus

the beam regardless of the direction of the field. There are however differences in angular

beam dynamics since reversing the field causes the particles to rotate in opposite directions,

or equivalently it reverses the direction of the angular momentum. These differences affect

the radial dynamics only if transverse fields are introduced, e.g. to obtain dispersion.

C. Peak field

Purely sinusoidal field lattices have a severe problem with peak fields in large-radius

solenoid coils [35]. An exact solution of the field using Maxwells equations in cylindrical
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coordinates can be written as

Bz(r, z) = A cos

(
2πz

λ

)
I0

(
2πr

λ

)

Br(r, z) = A sin

(
2πz

λ

)
I1

(
2πr

λ

)

where I0 and I1 are modified Bessel functions. For example, at a radius equal to the cell

length (half the period of the magnetic field λ) the value of the function I0 is 5.5, the value

of the function I1 is 4.5, and the peak field is ∼7 times the desired field value A on the axis.

V. LATTICES WITH ONE SOLENOID PER CELL

We now consider cooling lattices with one solenoid coil in each geometric cell. The

four characteristic designs of this type were illustrated in Fig. 1. There are five contin-

uous parameters and one symmetry factor that determine the properties of these lattices

{d, L, a, t, J ; fe}, where L is the length of the coil, a is the inner radius, t is the radial thick-

ness and J is the current density. The outer radius of the coil is b = a+ t. We will use the

external symmetry parameter (fe) to indicate whether the polarity of the current in the

coils alternate in neighboring geometric cells. We use fe = -1 if the polarity flips and fe =

+1 if the polarity remains the same. Solutions must obviously satisfy the constraint L < d.

We define the cell boundary (b) to be the axial location midway between the coils and the

cell midplane (m) to be the axial position through the center of the coil.

A. Thin lens approximation

Let us start by examining the lattice using the thin lens approximation. This analysis

is applicable to the solutions with minimums of the beta function at the cell boundary.

Consider the case where we begin the matrix calculation in the center of one of the solenoids.

Then the one-cell transport matrix M is the product

M = F

(
f

2

)
D(d)F

(
f

2

)

where F is the 2x2 matrix for a thin lens of focal length f/2 and D is the matrix for a drift

space of length d. This matrix is then compared to the standard form of the Courant-Snyder
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matrix ∣∣∣∣∣∣
cosψ + α sinψ β sinψ

−γ sinψ cosψ − α sinψ

∣∣∣∣∣∣
This allows us to immediately determine the relations for the phase advance per cell and

the maximum value of the beta function

cosψ = 1 − d

2f

βmax =
d

sinψ

The minimum value of βmax occurs when the phase advance is π/2. The scale of the mag-

nitude of the beta function is set by the cell length d. We can find an expression for the

minimum value of the beta function by calculating a new matrix beginning midway between

the solenoids

M = D

(
d

2

)
F (f)D

(
d

2

)

This gives

βmin =
d

2 sinψ
(1 + cosψ)

If we now use the expression for the focal length of the a thin solenoid lens from Eq. 4, we

find that the phase advance per cell is given by

cosψ = 1 − e2B2
0Ld

8p2
(7)

For very high momentum particles the phase advance is ∼0. As p decreases the phase

advance reaches a maximum value of π when

pπ =
eB0

4

√
Ld (8)

Below this momentum Eq. 7 for the phase advance becomes unphysical and there is a stop

band in the momentum spectrum. The minimum value of the beta function approaches 0

at the edge of the stop band. This type of analysis fails when real solenoids have lengths

that are a significant fraction of the cell length d.

B. Peak field enhancement

The range of allowed coil parameters is strongly constrained by the field enhancement on

the solenoid coil. The peak field on the coil usually occurs near the inner surface. In the
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FIG. 2: (Color) Peak field enhancement as a function of the length of the coil. The other parameter

values were d = 100 cm, a = 40 cm, t = 10 cm, and J = 100 A/mm2.

design work here we try to keep the engineering current density at or below 100 A/mm2 at

4.2 K. This limits the peak field to ∼8 T for NbTi coils and ∼17 T for Nb3Sn coils [36]. In

addition there are stress limitations that constrain the coil parameters [37]. A rule of thumb

in solenoid design is that the criterion

σp[MPa] = Bz[T ] r[m] J [
A

mm2
] < 350

should be satisfied for all locations in the coil, where σp is the peak stress, Bz is the field in

the coil at the radius r, and J is the current density. If this criterion is violated it is likely

that the conductor will not be able to support the magnetic stresses without the addition

of high-strength non-conducting support layers.

The peak field decreases with increasing cell length for the no-flip case if the coil dimen-

sions remain the same. The peak field for both cases increases with the length of the coil.

Figure 2 shows the dependence of the peak field enhancement on the length of the coil. The

peak field enhancement decreases as the coil is made longer if the other dimensions remain

the same. The enhancement is larger when the polarity flips in alternate cells. The peak

field for both cases decreases with increasing radius of the coil. The peak field for a given

radius is smaller for the case where the polarity flips in alternate cells.

The central field and the peak field in the coil grow linearly with the current density. For
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FIG. 3: Trace of the one-cell transport matrix versus momentum. The parameter values were d =

100 cm, L = 67.1 cm, a = 43.6 cm,t = 12.6 cm, J = 40 A/mm2 and alternating polarity.

a given current density the central and peak fields are larger for the no-flip case. The central

field and the peak field in the coil also grow approximately linearly for coil thicknesses for

the parameter range considered here. For a given radial thickness the central and peak fields

are larger for the no-flip case.

C. Sinusoidal field approximation

In order to compare the results of our lattice calculations using the symplectic integrator

with the Mathieu theory we first found the single coil configuration that gave the best ap-

proximation to a pure sine field on-axis. The results from an optimization program produced

a very pure sine wave field. The stability of a solution can be found from the trace of the

one-cell transport matrix. Solutions are stable provided the absolute value of the trace is less

than 2. Figure 3 shows a plot of the trace versus momentum for the sine wave solution. We

see that as predicted by the thin lens theory the lattice transmits high momentum particles.

As the momentum drops we reach the upper edge of the π resonance at 116 MeV/c, whereas

the thin lens prediction from Eq. 8 is 173 MeV/c. However, Fig. 3 also shows additional

momentum pass bands below 70 MeV/c, which were not present in the thin lens theory.

The momentum pass band structure from this coil configuration are quantitatively com-

20



TABLE III: Momentum passband locations [MeV/c].

q one-coil passband Mathieu theory

0.329-0 116-∞ 116-∞

1.86-0.890 49-70 49-70

4.63-3.04 31-37 31-38

8.63-6.42 23-26 23-26

13.87-11.05 18-19 18-20

pared with the Mathieu theory results in Table III. The momentum values for Mathieu

theory come from the relation

p =
eB0λ

8π
√
qM

(9)

where B0 = 2.78 T, λ = 2 m and the qM values for the pass bands are taken from Table II.

The agreement with theory is excellent. The high energy pass band has < +|− >1 symmetry

while the second band has < −̂+̂−̂ >2 symmetry. Each of the additional lower momentum

bands has an additional minimum of the beta function in the interior of the cell.

D. Lattice properties

The minimum and maximum values of the beta function are shown as a function of p

in Fig. 4. At the edge of every stop band the minimum value of the beta function in the

cell approaches 0, while the maximum value of the beta function becomes very large. This

general behavior of the beta function as a function of momentum does not depend on the

polarity of the magnetic field in alternate cells. In some lattices the axial position where the

beta minimum occurs in a given pass band changes as the momentum is varied. We define

the lower edge of the high energy pass band to be pπ. We are also interested in the possibility

of using the second pass band for cooling. The beta function is flatter and the maximum

value of βmin is limited in this pass band. We define p2 to be the center of this pass band and

∆p2 to the full width of the band. The dashed line in the figure shows the linear dependance

of the beta function on momentum for a continuous solenoid expected from Eq. 5. Note

how the minimum and maximum beta functions in each pass band approach the value for

the continuous solenoid.
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FIG. 4: (Color) Minimum and maximum values of the beta function as a function of p. The

parameter values were d = 100 cm, L = 40 cm, a = 40 cm, t = 10 cm, J = 100 A/mm2 and

constant polarity.

1. Location of the momentum pass bands

The momentum of the π resonance increases with the length of the cell if the coil dimen-

sions remain fixed. The dependence is stronger for the alternating polarity case. The center

of the second pass band increases for alternating polarity, but is insensitive to cell length

for constant polarity.

Figure 5 shows the momentum dependence as a function of the coil length L. The length

of the solenoid has a strong effect on the value of pπ, and on the location and width of

the second, lower momentum pass band for constant polarity. As L/d increases the second

pass band moves up in momentum and expands in acceptance. At L/d = 0.9 the one-cell

transport matrix at the low momentum edge of the second pass band just reaches a trace

of 2 and the stop bands below this have disappeared. In the limit when L/d = 1 we have

a continuous solenoid and there are no resonances or stop bands. The effect of changing L

is somewhat weaker for alternating polarity. The location of pπ and p2 grows at first, but

then saturates for the limit L/d=1. The width of the second pass band ∆p2 never becomes
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FIG. 5: (Color) Location of the π resonance, and the midpoint and width of the second band as a

function of L. The other parameter values were d = 100 cm, a = 40 cm, t = 10 cm, and J = 100

A/mm2.

very large.

We next consider changes in the pass bands as we vary the radius of the coil. Figure 6

shows the location of the π resonance, and the midpoint and width of the second band as a

function of the coil radius. Increasing the radius decreases the location of the π resonance,

especially in the flip case. It also decreases the midpoint of the second band for the flip case.

Note however that p2 is independent of radius for the no-flip case. The width of the second

band is largest for large radius coils in the no-flip case.

The location of the π resonance, and the midpoint and width of the second band grow

linearly with the current density. These quantities also grow approximately linearly with

coil thickness.

The location of the π resonance can be estimated for alternating polarity lattices from

the Mathieu theory. Since qM = 0.329 at pπ and qM ≈ 1.375 at p2, we can use Eq. 9 to find

that

pπ = 20.8 B0λ (10)

p2 = 10.2 B0λ

where the units are {MeV/c, T, m}. This expression should become more accurate as
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FIG. 6: (Color) Location of the π resonance, and the midpoint and width of the second band as a

function of the coil radius. The other parameter values were d = 100 cm, L = 50 cm, t = 10 cm,

and J = 100 A/mm2.

the field in the lattice approximates a pure sine wave. We have found that p2 only scales

approximately with B0 and that ∆p2 does not scale with B0 at all. B0 and pπ have similar

dependences on the coil parameters. For very non-sinusoidal fields, e.g. lattices with small

a/d and L/d and constant polarity, pπ is still approximately linearly related to Bo, but not

to Bod.

2. Beta function

For the high energy pass band the minimum value of the beta function is determined

mainly by the separation of the reference momentum from pπ. This can be seen in Fig. 7.

This figure shows the beta functions for two different coil configurations designed to have

pπ at 100 MeV/c. One solution (A1) is a no-flip case, while the other solution (A2) is a flip

case. We will discuss the properties of these solutions later in section VE. It is possible to

reduce the beta function by moving the reference momentum closer to pπ, but this reduces

the momentum acceptance.

We turn now to the minimum value of the beta function evaluated at the center (p2)

of the second pass band. We examine the dependence of the solutions on the geometrical

parameters under the constraint that p2 is fixed. Figure 8 shows the value of the beta
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FIG. 7: (Color) Minimum beta function in the high energy pass band versus momentum. The

minimum value occurs at the cell boundary.

function at the cell boundary and cell midplane and the momentum acceptance of the band

as we vary the cell length for the no flip case. The other coil dimensions were kept constant.

We adjusted the current density in the coils in order to keep p2 fixed at 200 MeV/c. Note

that as the cell length is increased the beta function at the cell boundary increases, but the

value of the beta bunction at the midplane and the momentum acceptance both decrease.

The beta function is always smaller at the midplane than at the cell boundary. Similar

behavior can be seen for the flip case in Figure 9. Again we see that as the cell length is

increased the beta function at the cell boundary increases, but the value of the beta bunction

at the midplane and the momentum acceptance both fall. The beta function is much smaller

at the midplane than at the cell boundary.

There is little dependence of the lattice parameters on the coil length if we require p2 to

be fixed. The peak field decreases slightly for longer coils. In the limit when L/d=1 the

value of the beta function for the no-flip case agrees with Eq. 5 for the continuous solenoid.

We show the dependence of the lattice parameters on the inner radius of the coil in Figure 10

for the no flip case. Note that the momentum acceptance can be increased by increasing a,

although the beta function under the coil also increases.

In the case when p2 is kept fixed, the values of the beta function at the boundary and
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FIG. 8: (Color) Value of the beta function at the cell boundary and midplane, momentum accep-

tance, and current density to keep p2 fixed at 200 MeV/c for the no flip case. The other parameter

values were L = 20 cm, a = 40 cm, and t = 24 cm.

FIG. 9: (Color) Value of the beta function at the cell boundary and midplane, momentum accep-

tance, and current density to keep p2 fixed at 200 MeV/c for the flip case. The other parameter

values were L = 40 cm, a = 35 cm, and t = 24 cm.
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FIG. 10: (Color) Value of the beta function at the cell boundary and midplane, momentum ac-

ceptance, peak field, and current density to keep p2 fixed at 200 MeV/c for the no flip case. The

other parameter values were d = 120 cm, L = 40 cm, and t = 24 cm.

midplane are insensitive to changes in the coil thickness. As the current density and the

resulting magnetic field is varied, the location of the second pass bands changes, as we saw

in the previous section, but the minimum value of the beta function in the center of the pass

band remains constant.

For the cases considered here the minimum value of the beta function at the center of

the pass band is proportional to the width of the band. For a given coil length the no-

flip configuration generates much wider pass bands than the flip configuration. In general

it is difficult to find solutions that have both a low beta function and a wide momentum

acceptance.

E. Representative lattices

In order to examine specific examples of the various classes of possible lattices we need

to select a particular cooling objective. We will look for solutions that would be suitable for

the early stages of a neutrino factory or muon collider. With just a single coil per cell we

will take d = 1 – 2 m. A typical reference momentum is 200 MeV/c. We will try to provide

a momentum acceptance of ±100 MeV/c. The beam radius is typically 30 cm, so we set a
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lower limit on a of 35 cm. Examples of this type of channel use rf cavities with frequency

around 200 MHz, which has a radius ∼60 cm. We take the length of the cavity to be at least

50 cm. We can satisfy these conditions either by using short coils of small radius located

between cavities, or by using longer coils with large radius located around the rf cavity. For

solutions with the minimum value of the beta function at the cell boundary (b) the natural

arrangement is to use a large radius coil surrounding the rf cavity. For solutions with the

minimum value of the beta function at the midplane (m) of the cell the natural arrangement

is to use a short, small radius coil over the absorber.

We first look at solutions that use the high energy pass band. All momenta greater than

pπ are transmitted by the lattice. We see from Fig. 7 that the minimum beta function

increases steadily as the momentum increases. Since we want a reference momentum (p0)

around 200 MeV/c and a momentum acceptance ±100 MeV/c, our primary fitting criterion

is to find solutions with pπ = 100 MeV/c. Solution A1 uses large radius coils that could fit

outside the rf cavities and that have constant polarity. This is an example of an < +|+ >1

lattice. Both the minimum values of the beta function and the magnetic field occurs at the

boundaries of the cell. The beta function is very flat with a minimum value of 65 cm and

a maximum value of 67 cm. Solution A2 also uses large radius coils, but has alternating

polarity. It is an example of an < +|− >1 lattice. Both the minimum values of the beta

function and the magnetic field occurs at the boundaries of the cell. The minimum value of

the beta function is 72 cm and the maximum value is 87 cm.

Next we consider solutions which make use of the second pass band. These solutions

produce much smaller values of the beta function than those in the first pass band. For the

same application described earlier our primary fitting criterion now is to find solutions with

the center of the band around 200 MeV/c. Ideally we would like the total width of the band

to also be ∼200 MeV/c, so the accepted momentum range would be 100-300 MeV/c, but

this has not been achieved in practice.

Solution A3 has a constant polarity lattice and is an example of a < +̂+̂+̂ >2 lattice.

Since the field does not change polarity we would eventually have to stop this lattice when

the canonical angular momentum builds up. A polarity-reversing matching section would

need to be provided and then the same type of lattice could be continued with the opposite

sign of the field. The minimum value of the beta function, which is 16 cm, occurs in the

middle of the cell. The beta function rises to 80 cm at the cell boundaries. Solution A4
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TABLE IV: Summary of the one-cell lattice solutions

sine A1 A2 A3 A4 Study 2a

type < +|− >1 < +|+ >1 < +|− >1 < +̂+̂+̂ >2 < −̂+̂−̂ >2 < +|− >1

d [cm] 100 100 100 200 200 75

L [cm] 67.1 30 40 74 80 15

a [cm] 43.6 70 70 50 50 35

t [cm] 12.6 6 14 25 35 15

J [A/mm2] 40 90 91 27 26 107

pπ [MeV/c] 116 100 100 380 431 85

p2 [MeV/c] 60 71 50 200 201 41

∆p2 [MeV/c] 21 45 17 87 64 13

p0 [MeV/c] 200 200 200 200 200 220

βabs(p0) [cm] 58 65 72 16 9 73

B0 [T] 2.8 2.1 2.4 4.7 5.5 2.8

Bp [T] 4.1 4.3 7.9 6.0 7.1 7.5

has an alternating polarity lattice and is an example of a < −̂+̂−̂ >2 configuration. The

minimum value of the beta function, which is 9 cm, occurs in the middle of the cell. The

beta function rises to 75 cm at the cell boundaries.

Typical parameters are shown in Table IV together with results for the other one-cell

lattice configurations. The quantity βabs is the beta function at the absorber location, which

can be either at the boundary or the midplane depending on the solution.

F. Example: Study 2a cooling channel

A single coil per cell design was used for the cooling channel in U.S. Study 2a for a

neutrino factory [38]. A layout of the channel is shown in Fig. 11. The rf cavity is colored

magenta, the absorbers are gray and the coils are cyan. The configuration of this lattice

differs from the canonical forms shown in Fig. 1. It was designed to have a very flat beta

function, as shown in Fig. 12. This meant that there was little penalty in not locating the

absorbers at the minimum of the beta function. It was convenient to make the absorbers
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FIG. 11: (Color) Layout of the Study 2a cooling channel. The cell boundaries are in the centers

of the rf cavities.
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FIG. 12: Beta function for the Study 2a cooling lattice as a function of z.

part of the window assembly for the pillbox type rf cavity. For the reference momentum

the minimum beta function was 73 cm, while the beta function at the absorber was 80 cm.

The dependence of the beta function on momentum is shown in Fig. 13. The minimum and

maximum values of the beta function along the cell are shown as solid lines. The squares

indicate the beta function at the cell boundary. Note that the cell boundary coincides with

the minimum of the beta function for all momenta in the high energy pass band used by

Study 2a. The Fourier sine series composition of the magnetic field is dominated by the first

order term with a small 4.6% contibution from the third order. Other properties are listed

in Table 3. For this and other examples from the literature in the following sections, the

fields and lattice parameters are the results of the calculations described here and sometimes

differ slightly from the results presented in the original papers.
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FIG. 13: (Color) Beta function for the Study 2a cooling lattice as a function of p.

VI. LATTICES WITH TWO SOLENOIDS PER CELL

We now consider cooling lattices with two solenoid coils in each geometric cell. In the

most general case the two coils could be totally different and this would introduce many

more parameters than were available with one coil per cell. However, we will restrict our

consideration to cases where the two coils have the same length and radii and have the same

magnitudes of current density. In this case we allow an additional internal symmetry

factor fi that specifies whether the two coils internal to the unit cell have the same (fi=1)

or opposite (fi=-1) polarity. There is also one additional continuous parameter g that

specifies the gap separation of the coils from their nearest symmetric neighbor coil across

the cell boundary, as shown in Fig. 14. Thus in this section we will examine the properties

of lattices based on the eight parameters in the set {d, L, a, t, J, g; fe, fi}. Solutions must

satisfy the constraint g + 2L < d.

In order to uniquely specify the distance g we start by picking any coil C. Call the distance

from C to the nearest coil on the left dL and the distance from C to the nearest coil on the

right dR. Then we define the gap (g) as g = min{dL, dR}. The maximum value of the gap

is then gmax = d/2−L. We define the cell boundary (b) to be the axial location that bisects

the gap, i.e. b is at g/2. We define the cell midplane (m) to be the axial position midway

between the cell boundaries. In the case of equally spaced coils where dL = dR there is an
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FIG. 14: (Color) Geometric properties of the two-coil unit cell.

ambiguity in the definition of the lattice notation. For example the sequence of coils + + –

– + + could be denoted either by < + + | − − > or by < + − | − + >. However, both of

these lattice classes produce the same result in this limit. This special case does not reduce

to a lattice with one coil per geometric cell.

Having two coils per cell allows more flexibility in cooling lattice design. As we discuss

below it is often possible to change the momentum acceptance in the second pass band by

varying g. This also changes the location of the pass band, but J can then be adjusted to

recenter the band.

A. Thin lens matrix analysis

Consider first the thin lens analysis of the two-coil cell. If we break the cell down to

M = D
(g

2

)
F (f)D(d − g)F (f)D

(g
2

)

we find that the phase advance per cell is given by

cosψ = 1 − d

f
+

gd

2f2
− g2

2f2
(11)

Note the quadratic dependence of the phase advance on the distance g. The minimum value

of the beta function is

βmin =
1

sinψ

(
d − gd

f
+
g2

2f
+
g2d

4f2
− g3

4f2

)
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If we instead break the cell down as

M = F

(
f

2

)
D(d − g)F (f)D(g)F

(
f

2

)

we find the maximum value of the beta function is

βmax =
1

sinψ

(
d− gd

f
+
g2

f

)

B. Peak field

The peak field in the coil increases for all symmetry classes for increasing L, t, and J

when the other dimensions are held constant. The peak field decreases for increasing a. For

changes in d the peak field increases when fi=-1 and decreases when fi=+1. The peak field

for all cases goes up as g is decreased, which corresponds to the case where the two neighbor

coils across the cell boundary come close together.

C. Lattice properties

In general a rich variety of behavior is seen in the two-coil configuration making it more

difficult to specify simple rules for predicting the lattice properties. The location of the

π resonance increases for all symmetry classes for increasing L, t, and J when the other

dimensions are held constant, while it decreases for increasing a. For changes in d the

location of the π resonance increases when fi=-1 and is approximately constant when fi=+1.

The dependence on d is particularly strong for the < + − | −+ > symmetry class.

The dependence of the π resonance on the distance g is shown in Fig. 15. Varying the gap

between the coils across the boundary has little effect on the locations of the π resonance for

the symmetry classes with fe = +1, but it has a very strong effect for the other two classes.

Note the degenerate behavior of the < + + | −− > and < +− |−+ > symmetry classes at

gmax.

We now look at the behavior of the properties of the second pass band under the constraint

that p2 is fixed at 200 MeV/c. Fig. 16 shows the width of the pass band, and the beta

functions at the cell boundary and at the cell midplane as a function of g for the< ++|−− >

symmetry class. We also show the value of the current density required to keep p2 constant.

The distance g can be used to adjust the momentum acceptance of the band. As g decreases
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FIG. 15: (Color) Location of π resonance as a function of g. The other parameter values were d =

150 cm, L = 40 cm, a = 50 cm, t = 10 cm, and J = 70 A/mm2.

the beta function at the boundary also decreases, while the beta function at the midplane

increases. Note that βb is smaller than βm here, unlike the case for one coil per cell. The

effects of varying g on the momentum aceptance can be seen more clearly in Fig. 17. For

small g the acceptance is symmetric around p2. For larger g the acceptance increases.

However, as the value of g approaches gmax the focusing becomes too weak, the acceptance

becomes distorted, and the beta function becomes very large at the upper end of the band.

This distortion also occurs when a is made large.

D. Representative lattices

We have used the example initial cooling problem from the previous section to search for

representative two-coil solutions. We try to find small radius solutions with the coils located

between the rf cavities. For solutions with the minimum value of the beta function at the

cell boundary we would locate the rf cavity at the cell midplane, whereas for solutions with

the minimum of the beta function at the midpoint of the cell we would locate the rf cavity

across the cell boundary between adjacent cells.

A summary of characteristic solutions for the high energy pass band is given in Table V.

All of the B solutions in Table V have a cell length of 1.5 m and a reference momentum of
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FIG. 16: (Color) Width of the second pass band, peak field, and beta function at the cell boundary

and cell midplane as a function of g for the < + + | − − > symmetry class. The other parameter

values were d = 275 cm, L = 50 cm, a = 35 cm, and t = 11 cm.

200 MeV/c. They all have the π resonance located around 100 MeV/c, so the half-width

of the momentum acceptance is also 100 MeV/c. Note that solutions for a given pass band

and given coil current density polarities can have different beta function symmetries. Most

of these solutions, other than B3, have the wrong natural symmetry for optimal cooling.

Nevertheless in the table we assume the absorber is located at the cell boundary, which is

the center of the intercell gap. The quantity βabs is the beta function at the absorber. In

most cases this is not the minimum value of the beta function in the cell. The quantity Lrf

is the larger intercoil spacing in the cell, which is centered on the cell midplane. The B3

solution appears best for cooling purposes. It has a beta function at the absorber location

of 94 cm at the reference momentum. There is an 80 cm gap available for locating the rf

cavity. The peak field in the coil is less than 5 T.

A summary of characteristic solutions for the second momentum pass band is given in

Table VI. All of the B solutions in Table VI use a cell length of 2 m and a reference momen-

tum of 200 MeV/c. Each of them has the center of the second pass band located around 200

MeV/c. Three of these B solutions have the beta minimum at the cell boundary, which is the

correct natural symmetry for optimal cooling. These solutions have smaller beta functions

at the absorber and less momentum acceptance than the solutions in Table V. Solution B6
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FIG. 17: (Color) Beta function at the cell boundary as a function of p for the < + + | − − >

symmetry class. The value of g starts at 10 cm, then increases in increments of 10 cm. The other

parameter values were d = 275 cm, L = 50 cm, a = 35 cm, and t = 11 cm.

would be suitable for cooling, provided that occasional field-flip matching sections are added.

The B8 solution appears best for cooling purposes. It has a beta function at the absorber

location of 13 cm at the reference momentum, although the full momentum acceptance is

only 74 MeV/c. There is a 79 cm space available for locating the rf cavity. The peak field

in the coil is 5.5 T. The B9 example shows that two-coil solutions also exist for the second

pass band with the minimum of the beta function at the cell midplane.

E. Example cooling channels

We consider two examples from the literature that use two coils per geometric cell. Both

of these examples differs from the characteristic solutions examined in the previous section

by having a large radius. The first example is the baseline cooling lattice from the U.S.

Feasibility Study I for a neutrino factory [15, 39]. A layout of the channel is shown in

Fig. 18. Both Nb3Sn coils in each cell have the same polarity. This is a < + + | − − >1

configuration. The beta function along the cell is shown in Fig. 19. The minimum value

of the beta function is 42 cm. The momentum acceptance is smaller than the examples in

Table V. The cell boundary coincides with the minimum of the beta function for all momenta
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TABLE V: Summary of the two-cell high-energy pass band characteristic solutions.

B1 B2 B3 B4 B5 Study 1

type a b c d e c

d [cm] 150 150 150 150 150 110

L [cm] 20 25 20 20 20 30

a [cm] 37 35 37 37 36 68

t [cm] 5 10 10 10 6 35

J [A/mm2] 66 77 81 92 79 49

g [cm] 20 15 30 20 45 30

pπ [MeV/c] 101 100 101 100 100 156

p2 [MeV/c] 54 66 79 74 60 80

βabs(p0) [cm] 124 112 94 100 118 42

Lrf [cm] 90 85 80 90 65 80

B0 [T] 1.6 1.9 1.9 1.9 1.6 3.4

Bp [T] 2.7 5.0 4.8 5.7 3.4 9.4

a< + +ˆ+ + >1

b< − +ˆ− + >1

c< + + | − − >1

d< − +ˆ+ − >1
e< + +ˆ−− >1

in the high energy pass band used by Study 1. The Fourier harmonics are dominated by

the fundamental mode with only a 0.6% contribution from the third order term. Other

properties of the channel are shown in Table V. The peak field in the conductor is satisfactory

for Nb3Sn coils.

The second example is the transverse cooling lattice that was used as the basis for the

RFOFO cooling ring [8]. A layout of the channel is shown in Fig. 20. The two coils in each

cell have opposite polarity. This is a < + − | + − >2 configuration. The beta function

along the cell is shown in Fig. 21. The minimum value of the beta function is 40 cm. The

dependence of the beta function on momentum is shown in Fig. 22. The minimum and

maximum values of the beta function along the cell are shown as solid lines. The squares

indicate the beta function at the cell boundary. Note that the cell boundary coincides with
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TABLE VI: Summary of the two-cell characteristic solutions for the second momentum pass band.

B6 B7 B8 B9 RFOFO

type a b c d b

d [cm] 200 200 200 200 275

L [cm] 34 47 47 46 50

a [cm] 40 40 40 40 77

t [cm] 16 20 16 20 11

J [A/mm2] 42 47 40.5 36.8 95.3

g [cm] 44 27 27 40 60

pπ [MeV/c] 314 275 364 278 264

p2 [MeV/c] 200 199 201 200 198

∆p2 [MeV/c] 97 84 74 97 88

βabs(p0) [cm] 24 24 13 30 40

Lrf [cm] 82 79 79 68 215

B0 [T] 3.6 3.9 4.1 3.6 2.7

Bp [T] 5.3 6.5 5.5 5.4 7.4

a< + + | + + >2

b< + − | + − >2

c< + − | − + >2

d< − +ˆ+ − >2

the minimum of the beta function for all momenta in the second energy pass band used

by the RFOFO design. The RFOFO field is predominantly a double sine wave with a 10%

contribution of fourth harmonic and a 1.8% contribution of sixth harmonic. Other properties

of the channel are shown in Table VI.

VII. LATTICES WITH THREE SOLENOIDS PER CELL

We next consider cooling lattices with three solenoid coils in each geometric cell. In

the most general case the three coils could be totally different and this would introduce

many more parameters than were available with two coils per cell. However, a simpler
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FIG. 18: (Color) Layout of the Study 1 cooling channel.
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FIG. 19: Beta function for the Study 1 cooling lattice.

way to make use of the new coil is to use the current in the third coil as a means of

adjusting the lattice properties without modifying the geometry. Thus we will restrict our

consideration to symmetric cases where the two outer coils have the same length, radii and

current density. We will denote these as the focusing coils. We assume the third coil, which

we call the coupling coil, is located symmetrically between the focusing coils. We will place
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+ - + -

5.5 m

FIG. 20: (Color) Layout of the RFOFO cooling channel.
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FIG. 21: Beta function for the RFOFO cooling lattice.
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FIG. 22: (Color) Beta function for the RFOFO cooling lattice as a function of p.

no restrictions on the length, radii or current density of the coupling coil. The relative

polarity of the current density between the focusing and coupling coils will be specified

using an internal symmetry factor fi. As before we use fe to indicate whether the overall

polarity flips (fe= -1) or not (fe= 1) in alternate cells. The layout of the geometric cell is

shown in Fig. 23.

The gap g is the distance between the rightside focus coil in one geometric cell and the

leftside focus coil in the next geometric cell. There is one additional axial parameter h that

specifies the length of the coupling coil. Thus in this section we will examine the properties
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FIG. 23: (Color) Axial layout of the unit cell with three coils per cell.

of lattices based on the 12 parameters in the set {d, L, a, t, J, g, h, ac, tc, Jc; fe, fi}. Solutions

must satisfy the constraint 2L+ g + h < d. We define the cell boundary (b) to be the axial

location that bisects the gap, i.e. b is at g/2. We define the cell midplane (m) to be the

axial position midway between cell boundaries, i.e. m is at the center of the coupling coil.

There is no ambiguity in the definition of the cell boundary in the case of equally spaced

coils with the same dimensions and the same magnitude of the current density since we are

requiring both focusing coils to have the same polarity.

Having two adjustable currents in each cell gives us a “tunable” lattice for the second

pass band. One can use the coupling coil Jc to set the momentum acceptance and beta

function at the absorber. Then the band can be recenterd at the desired momentum by

adjusting the focusing J . In this way the properties of the lattice can be adjusted without

changing the size or location of the coils. For example the beta function can be tapered to

follow the reduction in beam emittance from cooling.

The thin lens analysis for this case contains many additional terms containing the focal

length of the coupling coil and is not particularly enlightening. The peak field in these

configurations can occur in either the focusing or the coupling coil. In terms of the new
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variables the peak field is not very sensitive to changes in g or ac. The peak field does

however grow approximately linearly with h for all the symmetry classes. In general the

peak fields for 200 MeV/c reference momentum solutions are smaller with three coils per

cell than the corresponding solutions with one coil per cell.

A. Lattice properties

With the large number of available parameters it is difficult to make completely general

statements about the properties of the three-coil lattice configurations. The location of the

π resonance can be changed by varying the gap distance g or the coupling coil length h.

The π resonance increases in momentum for increasing h for all symmetry classes when the

coupling coil is long.

The direct relationship between the minimum value of the boundary beta function at p2

and the width of the second pass band is also seen for the case of three coils per cell. The

dependence of some properties of the second pass band on the coupling coil length for the

< + + +| − −− > symmetry class are shown in Fig. 24. The location and width of the

band increase with increasing h. The minimum value of the beta function occurs at the cell

boundary for h up to ∼30 cm for this example and then switches to the cell midplane for

longer coils. This shows that the character of the solution can be changed by varying the

length of the coupling coil. The dependence of some properties of the second pass band on

the current density in the coupling coil for the < +++|−−− > symmetry class is shown in

Fig. 25. For this figure the current density in the focusing coils was adjusted to keep p2 fixed

at 200 MeV/c. The width of the band tends to grow for increasing coupling current. The

minimum value of the beta function occurs at the cell boundary for h up to ∼95 A/mm2

for this example and then switches to the cell midplane for higher current densities. This

shows that the character of the solution can also be changed by varying the relative currents

in the coupling and focus coils.

B. Representative lattices

We have used the example initial cooling problem from the previous sections to search

for representative three-coil solutions. We try to find solutions where either the focusing
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FIG. 24: (Color) Location of the center of the second pass band p2, the width of the band, the

beta function at the cell boundary βb and the beta function at the cell midplane βm as a function

of the distance h. The other parameter values were d = 2.5 m, L = 18 cm, a = 35 cm, t = 17 cm,

J = 73 A/mm2, g = 54 cm, ac = 70 cm, tc = 12 cm, and Jc = 75 A/mm2.

coils or the coupling coil have small radius and are located between rf cavities. The other

coil then has to have a large radius and be located outside the rf cavity. The most desirable

solution with small focusing coil radius has the minimum of the beta function at the cell

boundary, while solutions with small coupling coil radius want the minimum to occur at the

cel midplane.

A summary of characteristic solutions for the high energy pass band is given in Table VII.

The maximum length available for the rf cavity is d−g−2L for solutions with small focusing

coil radius and d − h for soultions with small coupling coil radius. None of these solutions

offer any obvious advantage over lattices with one or two coils per cell.

A summary of characteristic solutions for the second pass band is given in Table VIII.

Solution C8 is an attractive solution for early cooling. It is an < + + +| − −− >2 configu-

ration with a minimum beta funtion of 38 cm and a band width of 103 MeV/c.

43



FIG. 25: (Color) The current density J in the focusing coils, the width of the second pass band, the

beta function at the cell boundary βb and the beta function at the cell midplane βm as a function

of the current density Jc in the coupling coil. The other parameter values were d = 2.5 m, L = 18

cm, a = 35 cm, t = 17 cm, g = 54 cm, h = 20 cm, ac = 70 cm, and tc = 12 cm.
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FIG. 26: (Color) Layout of the Study 2 cooling channel.

C. Example: Study 2 cooling channel

The cooling lattice from the second U.S. feasibility study for a neutrino factory [3, 40, 41]

uses three coils per cell. A layout of the channel is shown in Fig. 26. All three coils in

each cell have the same polarity. The beta function along the cell is shown in Fig. 27. The

minimum value of the beta function is 49 cm. This is an < + + +| − −− >2 configuration.

The dependence of the beta function on momentum is shown in Fig. 28. The minimum and

maximum values of the beta function along the cell are shown as solid lines. The squares
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TABLE VII: Summary of the three-cell characteristic solutions for the first pass band. All of these

solutions have d = 2 m.

C1 C2 C3 C4

type a b c d

L [cm] 10 25 16 30

a [cm] 40 75 39 76

t [cm] 5 5 6 8

J [A/mm2] 69 50 70 46

g [cm] 50 50 38 30

h [cm] 30 67 30 65

ac [cm] 70 35 70 35

tc [cm] 5 5 6 5

Jc [A/mm2] 63 50 65 49

pπ [MeV/c] 99 100 101 101

p2 [MeV/c] 73 41 66 35

βabs(p0) [cm] 129 152 130 154

Lrf [cm] 130 133 130 135

B0 [T] 1.1 1.5 1.1 1.5

Bp [T] 2.4 2.0 2.9 2.6

a< + + +| + ++ >1

b< + − +| + −+ >1

c< + + +| − −− >1

d< + − +| − +− >1

indicate the beta function at the cell boundary. Note that the cell boundary coincides with

the minimum of the beta function for all momenta in the second energy pass band used by

the Study 2 design. The Fourier decomposition of the magnetic field contains very strong

contributions from the odd higher order harmonics. The amplitude of the third order term is

41% and the amplitude of the fifth order term is 34% of the fundamental. Other properties

of the channel are shown in Table VIII.
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TABLE VIII: Summary of the three-cell characteristic solutions for the second pass band.

C5 C6 C7 C8 C9 Study 2

type a b c d e d

d [cm] 250 250 250 250 250 275

L [cm] 30 15 30 18 30 16.7

a [cm] 75 35 75 35 35 33

t [cm] 10 25 10 17 14 17.5

J [A/mm2] 49 72 49 73 70 75.2

g [cm] 30 88 30 54 70 35

h [cm] 80 42 80 20 20 33

ac [cm] 35 74 35 70 70 77

tc [cm] 10 5 14 12 10 8

Jc [A/mm2] 56 -70 55 75 65 98

pπ [MeV/c] 486 320 538 274 293 274

p2 [MeV/c] 201 199 199 199 201 194

∆p2 [MeV/c] 52 69 36 103 70 117

βabs(p0) [cm] 7 19 4 38 22 49

Lrf [cm] 170 132 170 160 120 205

B0 [T] 5.3 3.5 6.2 3.1 3.6 2.8

Bp [T] 6.0 7.1 7.2 6.4 6.5 6.4

a< −̂ − ++̂ + −−̂ >2

b< + − +| + −+ >2

c< −̂ + −+̂ − +−̂ >2

d< + + +| − −− >2

e< + − +| − +− >2

VIII. SCALING RELATIONS

Any of the lattice solutions discussed in the the previous sections can be scaled geomet-

rically to produce additional lattices that may be more satisfactory for other conditions.

Suppose we scale all the cell dimensions by the same factor f . Then it follows from Eq. 7

that we can obtain the same on-axis field by scaling the current density by 1/f . However,
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FIG. 27: Beta function for the Study 2 cooling lattice.
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FIG. 28: (Color) Beta function for the Study 2 cooling lattice as a function of p.

we have seen in Eq. 11 that the pass band locations scale like Bod. Thus we need to scale

the current density like 1/f2 to keep the pass band locations fixed. This is illustrated in

Fig. 29 where the scale factor of 1 corresponds to the A4 example. The current density was

adjusted to keep p2 fixed at 200 MeV/c. The peak field in the coil falls with increasing scale

factor. The maximum on-axis field is proportional to the peak field in the coil. Both the

beta function at the boundary and at the midplane grow linearly with increasing scale factor.

However, note that the magnitude of the beta function at the midplane is still quite small

(∼ 13 cm for a 3 m cell length). The momentum acceptance (not shown) is independent of
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FIG. 29: (Color) Geometrical scaling of the A4 example lattice.

the scale factor.

In the previous sections we have systematically examined the characteristics of cooling

lattices with increasing number of coils per cell. In order to compare solutions with different

numbers of coils per cell and different symmetry classes it is useful to introduce another

scaling variable. We have seen that there is often a direct relationship between the magnitude

of the beta function and the momentum acceptance. Since the beta function depends on

the scaling parameter f , we can define a normalized beta function corresponding to a fixed

maximum axial field. We then examine how this scaled beta function depends on the

momentum acceptance.

We define the scaled momentum acceptance as

δ = ±p− pπ

p
for the first pass band

δ = ±∆p2

2p2
for the second pass band

We define the scaled beta function F1 as the actual beta function for some lattice normalized

to the value of the beta function for the continuous solenoid evaluated with the same value

of the maximum on-axis field. Using Eq. 5

F1 =
β

βo
= β

eBo

2p
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FIG. 30: (Color) Scaled beta function as a function of scaled acceptance. The solid lines show first

pass band results for the flip (A2) and no flip (A1) example lattices. Symbols show second pass

band solutions with p2 = 200 MeV/c; ◦: 1 coil per cell, ∗: 2 coils per cell, 4: 3 coils per cell.

The scaled behavior of some of the example lattices discussed previously are shown in Fig. 30.

Large regions of the first pass band solutions and most of the second pass band solutions have

F1 smaller than 1 and thus produce more efficient cooling than a continuous solenoid. In

the first pass band alternating-polarity lattices are more advantageous for small momentum

acceptance. At the beginning of cooling the momentum spread of the beam is large. In

this case one would use a lattice operating in the first pass band because any value of

the momentum acceptance is possible in principle by operating far enough away from pπ.

However, the beta functions for these lattices are also large. After a sufficient amount of

longitudinal cooling reduces the momentum spread to ∼ ±30% full width one can switch to

a lattice that uses the second pass band and has smaller beta functions at the absorbers. The

scaled behavior of some of the example lattices discussed previously are shown in Fig. 31. For

each of these example solutions the radius was changed to vary the momentum acceptance

and the current density was adjusted to recenter the band at 200 MeV/c. The direct

relationship between the minimum beta function and the momentum acceptance can be

clearly seen in this figure.

One can proceed through a number of these stages, leading finally to a lattice with small
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FIG. 31: (Color) Scaled beta function as a function of scaled acceptance for example lattices for

the second pass band centered at 200 MeV/c.

acceptance and very small beta function. For δ ≥ 10%, using current 25 T HTS technology,

the smallest beta function using solenoid focusing appears to be ∼1 cm.

IX. SUMMARY

Ionization cooling channels play an important role in the design of neutrino factories

and muon colliders. In this paper we have summarized the status of cooling lattice design

using periodic solenoid focusing. There is considerable flexibility in the design of these

channels and they exhibit a great variety of interesting properties. The detailed behavior

of the lattice properties is strongly influenced by the symmetries exhibited by the polarities

of the currents in the coils in the periodic channel. In order to describe this behavior we

introduced a new system for classifying the symmetry properties of periodic solenoid cooling

lattices. A method using symplectic integration of the one-cell transport matrix was used

to calculate momentum stop bands and beta functions. This integration used the on-axis

field calculated from solenoid coil blocks. We found this method was accurate by showing

that a sinusoidally-varying magnetic field gave results in good agreement with predictions

from solutions of the Mathieu equation. The peak field in the coil was an important design
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constraint. We showed how the peak field in the coil and the lattice properties depend on

the geometric properties of the coils.

We introduced a new optimization procedure that emphasizes obtaining a desired momen-

tum band and minimizing the peak field in the coil. We used this method to systematically

search for lattice configurations that could be used in a neutrino factory or muon collider.

We saw that most features of the lattice dynamics could be seen even in the simplest case of

a single coil per geometric cell. There are two momentum pass bands that have been used

for cooling lattices. The beta function in the high momentum band is determined mainly

by the amount of momentum acceptance that is required. The location of the π resonance

scales with the maximum value of the on-axis magnetic field. The minimum value of the

beta function and the momentum acceptance are typically much smaller in the second pass

band. The momentum acceptance can be adjusted by varying the radius and length of the

coil.

Adding a second coil per geometric cell adds considerable flexibility for cooling channel

design. The gap between the two coils across the cell boundary is an important design

parameter that can have strong effects on the momentum acceptance and other lattice

properties. In addition the number of possible symmetry classes is doubled. With three

coils per cell it is possible to design a “tunable” lattice with fixed coil positions and radii.

The focusing coil current is used to set the acceptance and the beta function value at the

absorber, while the coupling coil current is used to center the location of the pass band. The

properties of different lattice types were compared using a scaled value of the beta function.

The value of the beta function is directly related to the momentum acceptance. For all

the coil configurations we have produced sample solutions for each of the symmetry classes.

Several of these lattice designs have interesting properties and might be suitable for further

investigation for the transverse cooling channel of a neutrino factory or muon collider.
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